Воздушные корни растений

Классификация

Недетерминированные корневые клубеньки, растущие на корнях Люцерны итальянской

На данный момент выделяют два основных типа корневых клубеньков: детерминированные и индетерминированные.Ошибка в сносках?: Неправильный вызов: ключ не был указан

Детерминированные корневые клубеньки встречаются у определенных таксонов тропических бобовых, таких как род Glycine (соя), Phaseolus (бобы) и Vigna, а также у некоторых Lotus. Такие корневые клубеньки утрачивают меристематическую активность вскоре после образования, поэтому рост обусловлен лишь увеличением размеров клеток. Это приводит к образованию зрелых клубеньков шаровидной формы. Другие типы детерминированных корневых клубеньков встречаются у многих трав, кустарников и деревьев (например, у арахиса). Они всегда ассоциированы с пазухами боковых или придаточных корней и образуются в результате заражения через повреждения (например, через трещины), в которых образуются эти корни. Корневые волоски при этом в процессе не задействованы. Их внутренняя структура отлична от таковой у соевых бобов.Ошибка в сносках?: Неправильный вызов: ключ не был указан

Недетерминированные корневые клубеньки встречаются в большинстве бобовых всех трёх подсемейств как в тропиках, так и в умеренных широтах. Их можно обнаружить у папилиоиноидных бобовых, таких как Pisum (горох), Medicago (люцерна), Trifolium (клевер) и Vicia (вика), а также у всех мимозоидных бобовых, таких как акация, и у цезальпиниоидов. Эти клубеньки получили название «недетерминированных» из-за того, что они их апикальная меристема активна, что приводит к росту клубенька на протяжении всей его жизни. В результате чего формируется клубенёк, имеющий цилиндрическую, иногда разветвлённую форму. Из-за того что они активно растут, можно выделить зоны, которые разграничивают различные стадии развития и симбиоза:

Диаграмма, иллюстрирующая различные зоны недетерминированного корневого клубенька (см. текст).

 Зона I – активная меристема. Здесь формируются новые ткани клубенька, которые затем дифференцируются в другие зоны.
Зона II – зона инфицирования. Эта зона пронизана инфекционными нитями, состоящими из бактерий. Растительные клетки здесь крупнее, чем в предыдущей зоне, деление клеток останавливается.

Интерзона II–III – вход бактерий в растительные клетки, содержащие амилопласты. Клетки удлиняются и начинают окончательно дифференцироваться в симбиотические, несущие азотфиксирующие бактерии. 
Зона III – зона фиксации азота. В каждой клетке этой зоны присутствует большая центральная вакуоль и цитоплазма заполнена симбиотическими бактериями фиксирующими азот. Растение наполняет эти клетки легемоглобином, что придаёт им розовый оттенок;
Зона IV – зона старения. Здесь происходит деградация клеток и их эндосимбионтов. Разрушение гема легемоглобина приводит к появлению зелёного оттенка. Это наиболее изученный тип корневых клубеньков, однако детали различны в клубеньках арахиса и родственных ему растений, а также в клубеньках агрокультурных растений, таких, как люпин. Его клубеньки образуются благодаря прямому заражению ризобиями эпидермы, где инфекционные нити не образуются. Клубеньки растут вокруг корня, образуя структуру наподобие кольца. В этих клубеньках, равно как и клубеньках арахиса, центральная инфицированная ткань однородна. У соевых бобов, гороха и клевера наблюдается недостаток неинфицированных клеток в клубеньках.

Нодуляция

Поперечный разрез клубенька корня сои . Бактерия Bradyrhizobium japonicum колонизирует корни и устанавливает азотфиксирующий симбиоз. На этом увеличенном изображении показана часть клетки с отдельными бактероидами в симбиосомах . На этом изображении видны эндоплазматический ретикулум, диктисома и клеточная стенка.

Узелки на корне клевера, фиксирующие азот.

Бобовые выделяют из своих корней органические соединения в виде вторичных метаболитов, называемых флавоноидами , которые привлекают к себе ризобии, а также активируют в бактериях, чтобы производить факторы nod и инициировать образование клубеньков. Эти узловые факторы вызывают завивание корневых волос . Завивка начинается с того, что самый кончик корневых волосков вьется вокруг Rhizobium . Внутри кончика корня образуется небольшая трубка, называемая инфекционной нитью, которая обеспечивает путь для Rhizobium, чтобы проникнуть в эпидермальные клетки корня по мере того, как корневой волос продолжает скручиваться.

Частичное завивание может быть достигнуто даже одним кивком . Это было продемонстрировано путем выделения узловых факторов и их применения к частям корневых волосков. Корневые волоски завивались в направлении нанесения, демонстрируя действие корневых волосков, пытающихся завиться вокруг бактерии. Даже нанесение на боковые корни вызывало скручивание. Это свидетельствует о том, что это кивок сам фактор, а не бактерия , которая вызывает раздражение завивки.

Когда узелок ощущается корнем, происходит ряд биохимических и морфологических изменений: в корне запускается деление клеток, чтобы создать узелок, и рост корневых волосков перенаправляется, чтобы многократно закручиваться вокруг бактерий, пока они полностью не инкапсулируются. или больше бактерий. Инкапсулированные бактерии многократно делятся, образуя микроколонию . Из этой микроколонии бактерии проникают в развивающийся узелок через инфекционную нить, которая прорастает через корневой волос в базальную часть клетки эпидермиса и далее в кору корня ; Затем они окружаются симбиозомной мембраной растительного происхождения и дифференцируются в бактероиды, которые фиксируют азот .

Эффективное образование клубеньков происходит примерно через четыре недели после посадки культуры , при этом размер и форма клубеньков зависят от культуры. Такие культуры, как соя или арахис, будут иметь более крупные клубеньки, чем кормовые бобовые, такие как красный клевер или люцерна, поскольку их потребности в азоте выше. Количество клубеньков и их внутренний цвет будут указывать на состояние азотфиксации в растении.

Нодуляция контролируется множеством процессов, как внешних (тепло, кислые почвы, засуха, нитраты), так и внутренних (авторегуляция клубеньков, этилен). Саморегуляция клубеньков контролирует количество клубеньков на растении посредством системного процесса с участием листа. Ткань листа распознает ранние события клубеньков в корне с помощью неизвестного химического сигнала, а затем ограничивает дальнейшее развитие клубеньков во вновь развивающихся тканях корня. Киназы рецепторов с богатыми лейцином повторами (LRR) (NARK в сое ( Glycine max ); HAR1 в Lotus japonicus , SUNN в Medicago truncatula ) необходимы для ауторегуляции клубеньков (AON). Мутация, приводящая к потере функции этих киназ рецепторов AON, приводит к суперклубенькам или гиперклубенькам. Часто аномалии роста корней сопровождают потерю активности киназы рецептора AON, предполагая, что рост клубеньков и развитие корня функционально связаны. Исследования механизмов образования клубеньков показали, что ген ENOD40 , кодирующий белок из 12–13 аминокислот , активируется во время образования клубеньков .

Виды воздушных корней

Этот орган растения, который встречается во многих разнообразных семействах растений, имеет разные специализации, соответствующие среде обитания растений. В общем виде роста они могут быть технически классифицированы как отрицательно гравитропные (растут вверх и от земли) или положительно гравитропные (растут вниз к земле).

«Душители» (опора корень)

Баньяновые деревья — это пример фига-душителя, который начинает жизнь как эпифит в кроне другого дерева. Их корни растут вниз и вокруг стебля растения-хозяина, и их рост ускоряется по мере достижения земли. Со временем корни срастаются, образуя псевдотруб, который может создавать впечатление, что он душит хозяина.

Еще один душитель, который начинает жизнь как эпифит, — это инжир Мортон-Бей ( Ficus macrophylla ) в тропических и субтропических районах восточной Австралии, у которого мощные нисходящие воздушные корни. В тропических лесах с субтропическим и умеренным климатом на севере Новой Зеландии рата-дерево Metrosideros robusta посылает воздушные корни по нескольким сторонам ствола хозяина. Из этих нисходящих корней растут горизонтальные корни, опоясывающие ствол и сливающиеся с нисходящими корнями. В некоторых случаях «душитель» переживает дерево-хозяин, оставляя в качестве единственного следа полое ядро ​​в массивном псевдостебле раты.

Пневматофоры

Эти специализированные воздушные корни позволяют растениям дышать воздухом в местах обитания с переувлажненной почвой. Корни могут расти вниз от стебля или вверх от обычных корней. Некоторые ботаники классифицируют их как аэрирующие корни, а не как воздушные , если они появляются из почвы. Поверхность этих корней покрыта чечевицами (небольшими порами), которые поглощают воздух в губчатую ткань, которая, в свою очередь, использует осмотические пути для распространения кислорода по растению по мере необходимости. Пневматофоры отличают черные и серые мангровые заросли от других видов мангровых деревьев .

Рыбаки в некоторых районах Юго-Восточной Азии делают пробки для рыболовных сетей, превращая пневматофоры Sonneratia caseolaris (также известные как «Мангровое яблоко») в маленькие поплавки.

Члены подсемейства Taxodioideae образуют древесные надземные структуры, известные как кипарисовые колени , которые выступают вверх от их корней. Первоначально считалось, что эти структуры функционируют как пневматофоры, но недавние эксперименты не смогли найти доказательств этой гипотезы.

Когда почва, на которой растет галофитное растение, содержит большое количество салицина и в значительной степени анаэробная почва, чтобы помочь дыханию, растение выбрасывает пневматофоры

Важно отметить, что даже у других растений газообмен, который происходит в листьях, требует минимальной работы для корней, которые находятся намного дальше. Корни поглощают собственный растворенный кислород из почвы

Однако, поскольку засоленная почва в значительной степени анаэробна, корни не могут осуществлять газообмен через почву и, следовательно, образовывать пневматофоры, которые могут поглощать кислород непосредственно из воздуха.

Гаусториальные корни

Эти корни встречаются у растений-паразитов , где воздушные корни прикрепляются к растению-хозяину посредством липкого прикрепляющего диска перед тем, как проникнуть в ткани хозяина. Омела — хороший тому пример.

Размножающиеся корни

Придаточные корни обычно развиваются из узлов проростков, образованных горизонтальными надземными стеблями, называемыми столонами , например побеги клубники и паучьи растения .

На некоторых листьях образуются придаточные почки, которые затем образуют придаточные корни, например, у комбинированного растения ( Tolmiea menziesii ) и матери-тысячи ( Kalanchoe daigremontiana ). Придаточные всходы затем отпадают от родительского растения и развиваются как отдельные клоны родительского растения .

Классификация

Недетерминированные корневые клубеньки, растущие на корнях Люцерны итальянской

На данный момент выделяют два основных типа корневых клубеньков: детерминированные и индетерминированные.Ошибка в сносках?: Неправильный вызов: ключ не был указан

Детерминированные корневые клубеньки встречаются у определенных таксонов тропических бобовых, таких как род Glycine (соя), Phaseolus (бобы) и Vigna, а также у некоторых Lotus. Такие корневые клубеньки утрачивают меристематическую активность вскоре после образования, поэтому рост обусловлен лишь увеличением размеров клеток. Это приводит к образованию зрелых клубеньков шаровидной формы. Другие типы детерминированных корневых клубеньков встречаются у многих трав, кустарников и деревьев (например, у арахиса). Они всегда ассоциированы с пазухами боковых или придаточных корней и образуются в результате заражения через повреждения (например, через трещины), в которых образуются эти корни. Корневые волоски при этом в процессе не задействованы. Их внутренняя структура отлична от таковой у соевых бобов.Ошибка в сносках?: Неправильный вызов: ключ не был указан

Недетерминированные корневые клубеньки встречаются в большинстве бобовых всех трёх подсемейств как в тропиках, так и в умеренных широтах. Их можно обнаружить у папилиоиноидных бобовых, таких как Pisum (горох), Medicago (люцерна), Trifolium (клевер) и Vicia (вика), а также у всех мимозоидных бобовых, таких как акация, и у цезальпиниоидов. Эти клубеньки получили название «недетерминированных» из-за того, что они их апикальная меристема активна, что приводит к росту клубенька на протяжении всей его жизни. В результате чего формируется клубенёк, имеющий цилиндрическую, иногда разветвлённую форму. Из-за того что они активно растут, можно выделить зоны, которые разграничивают различные стадии развития и симбиоза:

Диаграмма, иллюстрирующая различные зоны недетерминированного корневого клубенька (см. текст).

 Зона I – активная меристема. Здесь формируются новые ткани клубенька, которые затем дифференцируются в другие зоны.
Зона II – зона инфицирования. Эта зона пронизана инфекционными нитями, состоящими из бактерий. Растительные клетки здесь крупнее, чем в предыдущей зоне, деление клеток останавливается.

Интерзона II–III – вход бактерий в растительные клетки, содержащие амилопласты. Клетки удлиняются и начинают окончательно дифференцироваться в симбиотические, несущие азотфиксирующие бактерии. 
Зона III – зона фиксации азота. В каждой клетке этой зоны присутствует большая центральная вакуоль и цитоплазма заполнена симбиотическими бактериями фиксирующими азот. Растение наполняет эти клетки легемоглобином, что придаёт им розовый оттенок;
Зона IV – зона старения. Здесь происходит деградация клеток и их эндосимбионтов. Разрушение гема легемоглобина приводит к появлению зелёного оттенка. Это наиболее изученный тип корневых клубеньков, однако детали различны в клубеньках арахиса и родственных ему растений, а также в клубеньках агрокультурных растений, таких, как люпин. Его клубеньки образуются благодаря прямому заражению ризобиями эпидермы, где инфекционные нити не образуются. Клубеньки растут вокруг корня, образуя структуру наподобие кольца. В этих клубеньках, равно как и клубеньках арахиса, центральная инфицированная ткань однородна. У соевых бобов, гороха и клевера наблюдается недостаток неинфицированных клеток в клубеньках.

Симбиоз

Азот является наиболее часто ограничивающим питательным веществом для растений. Бобовые используют азотфиксирующие бактерии, в частности, симбиотические бактерии ризобий, внутри своих корневых клубеньков, чтобы противостоять ограничению. Бактерии ризобий превращают газообразный азот (N 2 ) в аммиак (NH 3 ) в процессе, называемом азотфиксацией . Затем аммиак ассимилируется в нуклеотиды , аминокислоты , витамины и флавоны, которые необходимы для роста растений. Клетки корня растений преобразуют сахар в органические кислоты, которые затем поставляют ризобиям взамен, отсюда симбиотические отношения между ризобиями и бобовыми.

Бобовое семейство

К растениям, способствующим фиксации азота, относится семейство бобовых — Fabaceae  — с такими таксонами, как кудзу , клевер , соя , люцерна , люпин , арахис и ройбуш . Они содержат в клубеньках симбиотические бактерии, называемые ризобиями , которые производят соединения азота, которые помогают растению расти и конкурировать с другими растениями. Когда растение умирает, фиксированный азот высвобождается, делая его доступным для других растений, что помогает удобрять почву . Подавляющее большинство бобовых культур имеют эту ассоциацию, но несколько родов (например, Styphnolobium ) нет. Во многих традиционных методах земледелия поля чередуются с выращиванием различных культур, которые обычно включают в себя растение, состоящее в основном или полностью из клевера, чтобы воспользоваться этим.

Не зернобобовые

Хотя на сегодняшний день большинство растений, способных образовывать азотфиксирующие корневые клубеньки, относятся к семейству бобовых Fabaceae , есть несколько исключений:

  • Parasponia , тропический род Cannabaceae, также способный взаимодействовать с ризобиями и образовывать азотфиксирующие клубеньки.
  • Актиноризные растения, такие как ольха и малина, также могут образовывать узелки, фиксирующие азот, благодаря симбиотической ассоциации с бактериями Frankia . Эти растения принадлежат к 25 родам, распределенным среди 8 семейств растений.

Способность фиксировать азот у этих семейств присутствует далеко не повсеместно. Например, из 122 родов Rosaceae только 4 рода способны фиксировать азот. Все эти семейства принадлежат к отрядам Cucurbitales , Fagales и Rosales , которые вместе с Fabales образуют кладу евроидов . В этой кладе Fabales были первой ветвью ветви; таким образом, способность фиксировать азот может быть плезиоморфной и впоследствии потеряна у большинства потомков исходного азотфиксирующего растения; однако может оказаться, что основные генетические и физиологические потребности в начальной стадии присутствовали у последних общих предков всех этих растений, но развились до полноценной функции только у некоторых из них:

Семья: Genera

Betulaceae : Alnus (ольха)

Cannabaceae : Trema

Казуариновые :

Аллокасуарина
Казуарина
Ceuthostoma
Гимностома

……

Coriariaceae : Кориариа

Datiscaceae : Datisca

Elaeagnaceae :

Elaeagnus (черника)
Бегемоты (облепихи)
Шефердия (ягоды буйвола)

……

Myricaceae :

Комптония (сладкий папоротник)
Морелла
Myrica (брусника)

……

Рамновые :

Цеанот
Colletia
Discaria
Кентротамнус
Retanilla
Talguenea
Trevoa

……

Розоцветные :

Черкокарпус (горный махаганис)
Хамаэбатия (горные невзгоды)
Дриас
Purshia / Cowania (горькие кисти / клифрозы)

Удобрения

Удобрения

Минеральное питание растений в природе обеспечивается тем, что остатки живых организмов перегнивают, распадаются на разные соединения. При выращивании культурных растений большинство этих веществ не успевает восстанавливаться. Поэтому в почву вносятся удобрения. Удобрения значительно влияют на рост и развитие растений. Например, удобрения, содержащие азот, увеличивают рост и массу надземных частей растения, а калий – подземных. Лучшее перенесение зимнего периода, то есть низких температур, обеспечивают соединения меди, калия и фосфора. Различают органические и минеральные удобрения.

Органические удобрения

Органические удобрения – это вещества, которые получаются из продуктов жизнедеятельности или остатков живых организмов. К органическим удобрениям относят торф, навоз, птичий помет и т. п.

Минеральные удобрения

Минеральные удобрения вырабатывает химическая промышленность. Это азотные, калийные и фосфорные удобрения. Наиболее распространенными азотными удобрениями являются мочевина, сульфат аммония, селитра; калийными – хлорид калия; фосфорными – суперфосфат.

Бактериальные удобрения

Используются иногда бактериальные удобрения, которые являются культурой бактерий (содержат споры почвенных бактерий). Это, например, азотобактерин – содержит клубеньковые бактерии.

Зеленые удобрения

Такие культуры, как люпин, люцерна, горох, клевер, используются как зеленые удобрения. Их добавляют на полях как источник органической массы. Кроме того, эти растения обогащают почву азотистыми соединениями, так как их корни живут в симбиозе с клубеньковыми бактериями.

При внесении удобрений в почву нужно придерживаться определенных правил, норм. Излишек удобрений негативно влияет не только на растения, но и на окружающую среду.

Запасающие корни.

В корнях любых растений, как правило, в некоторых количествах откладываются запасные питательные вещества такие, как сахар, крахмал, инулин и т.д. Но встречаются случаи, когда эта запасающая функция гипертрофирована и выходит на первый план. Корни при этом утолщаются и становятся мясистыми.

Такие видоизмененные стержневые корни, которые выполняют функцию запасания назвали «корнеплодами». Наиболее часто такая структура встречается у двулетников. К примеру, это морковь, свекла, репа, редис и т.д. В формировании этих корнеплодов принимает участие также и часть стебля — гипокотиль (или подсемядольное колено).

Корнеплоды

Корнеплоды на рисунке: 1 — брюква; 2 — свёкла египетская; 3 — свёкла сорта Маммут; 4 — морковь; с — семядоли; гп — гипокотиль; гк — главный корень.

У некоторых видов растений встречаются так называемые корневые шишки, которые являются сильно утолщенными придаточными корнями. Это, например, георгина, любка, чистяк и т.д. Между корневыми шишками и «корнеплодами» встречаются многочисленные переходы.

Корневые шишки

Типы корневых систем

Какие бывают виды корней, мы выяснили. Теперь остается разобраться с вопросом систем, ими образованных. Всего различают два основных типа.

  1. Стержневая. Характерна для класса Однодольные растения (злаки, лилейные, пальмовые и другие). Основная отличительная особенность: ярко выражен главный корень и слабо – придаточные и боковые.
  2. Мочковатая. Характерна для класса Двудольные растения (розоцветные, крестоцветные, бобовые и так далее). Особенность, которую имеет корень: виды корней выражены в одинаковой степени. Нет главного, так как придаточные и боковые своим ветвлением его подавляют, и формируется общая сильно изрезанная структура.

Больше вариантов корневых систем не известно.

Ходульные корни.

В мангровых зарослях, растущих в приливно-отливной полосе тропических морей, встречаются деревья с так называемыми ходульными корнями. Эти придаточные корни сильно разветвлены и растут вниз, благодаря чему деревья сохранят устойчивость на зыбком грунте.

Ходульные корни

К наиболее интересным и эффектным ходульным корням можно отнести корни-подпорки мощных ветвей фикуса-баньяна. Многочисленные придаточные корни баньяна также растут вниз, как это видно на рисунке. Внизу они сильно утолщаются, укореняются, развивая при этом свою  собственную корневую систему. В результате этого одно единственное дерево баньяна может разрастись в целую «рощу», и занимать при этом площадь до 500 м2.

Видоизменения корня

Видоизменения корня, вследствие обретения новых функций органы способны видоизменяться.

Корнеплод

Корнеплод – утолщение главного корня, связанное с отложением в нем запаса питательных веществ (морковь, свекла, редис и т. п.).

Корневые клубни (корнеклубни)

Корневые клубни (корнеклубни) – утолщение боковых или дополнительных корней, связанное с отложением запаса питательных веществ (батат, георгин и т. п.).

Корни-присоски

Корни-присоски характерны для растений паразитов или полупаразитов. Такие корни проникают в толщу стебля других растений и потребляют их соки. Повилика – это бесхлорофилльное растение — паразит, которое питается благодаря сокам растения хозяина. Омела – полупаразит. Это зеленое растение, способное к самостоятельному питанию (фотосинтезу), но водные растворы солей она образует от растения, на котором живет.

Дыхательные корни (пневматофоры)

Дыхательные корни (пневматофоры) – это боковые корни, которые растут вверх и поднимаются над поверхностью воды, почвы. Формируются у растений (мангровые деревья), которые растут на чрезмерно увлажненных почвах, болотах, с низким содержанием кислорода. Поэтому растения с помощью таких корней получают кислород непосредственно из воздуха. Дыхательные корни богаты аэренхимой.

Корни-прицепки

Корни-прицепки – это дополнительные короткие корни, которые развиваются на растениях с вьющимся стеблем (плющ, фикус цепкий и т. п.), которые плетутся вверх. Корни растут на стебле. С их помощью растение цепляется за трещины, опоры и поднимаемся выше.

Ходульные корни

Ходульные корни образуются на надземных побегах. Они закрепляются в почве и помогают растению (баньян, кукуруза и т. п.) удерживаться.

Воздушные корни

Воздушные корни развиваются у растений (орхидея), которые поселяются на деревьях, но не паразитируют. Воду и минеральные соли они получают из воздуха с помощью корней, которые свисают в воздухе.

Опорные корни

Опорные корни встречаются у больших деревьев (вяз, бук, тополь, тропические и т. п.). Представляют собой боковые корни. На боковых корнях, которые проходят возле поверхности почвы, развиваются плоские треугольные и прилегающие к стволу вертикальные надземные отростки, которые напоминают доски, прислоненные к деревьям.

Втяжные или контрактильные корни

Втяжные или контрактильные корни у некоторых растений происходит резкое сокращение корня в продольном направлении у его основания (например, у растений, которые имеют луковицы). Втяжные корни распространены у покрытосеменных растений. Они обусловливают плотное прилягание к земле розеток (например, у подорожника, одуванчика и т. п.), подземное положение корневой шейки и вертикального корневища, обеспечивают некоторое углубление клубней. Таким образом, втяжные корни помогают побегам находить наилучшую глубину залегания в почве. Втяжные корни в Арктике обеспечивают переживание неблагоприятного зимнего периода цветочными почками.

Корневые системы способны улучшать свое питание благодаря взаимодействию с микроорганизмами – грибами, бактериями, водорослями. Симбиоз корней цветочных растений с грибами называется микоризой, с бактериями – бактериоризой. Почвенный слой толщиной 2-3 мм вокруг корней растений образует ризосферу. Корни выделяют в ризосферу вещества, которые привлекают микроорганизмы.

В клетках корней некоторых растений (бобовые, березовые и т. п.) поселяются клубеньковые бактерии, которые своими выделениями вызывают разрастание паренхимы и образование клубеньков на корнях. Клубеньковые бактерии способны фиксировать атмосферный азот в виде соединений, которые могут усваиваться растениями (нитратов, нитритов). Часть азотных соединений усваивается растением, а часть остается в почве. Бобовые растения используют в сельском хозяйстве для обогащения почв азотистыми соединениями.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector