Роль транспирации воды в жизни растений
Содержание:
- Написать отзыв
- Транспирация
- Лист как орган транспирации
- Описание процесса транспирации
- Процессы передвижения воды
- Суточный ход транспирации
- Механизм и интенсивность транспирации
- Механизм транспирации
- Ход испарения в зависимости от времени суток
- Регуляция
- Виды, функции и строение тканей растений.
- Суточный ход транспирации
- Испарение воды растениями
- ИНТЕГРАЦИИ У РАСТЕНИЙ
- Что такое транспирация и ее показатели
- Внутреннее строение листа
Написать отзыв
Продолжить
Транспирация
Завершающей частью водного обмена растений является транспирация, или испарение воды листьями, то есть верхний двигатель тока воды в растении. Это явление с физической стороны представляет собой процесс перехода воды в парообразное состояние и диффузию образовавшегося пара в окружающее пространство.
Транспирация выполняет в растении следующие основные функции:
это верхний двигатель тока воды,
это защита от перегрева,
это нормализация функционирования коллоидных систем клеток листа.
Показатели транспирации
Транспирация характеризуется следующими показателями: интенсивностью, продуктивностью и коэффициентом.
Интенсивность транспирации – это количество воды, испаряемой растением с единицы листовой поверхности в единицу времени. Выражается формулой:
Тр= С г Н2О _
r м2.1час,
где Тр – интенсивность транспирации, С – градиент концентрации водяного пара между транспирирующей поверхностью и окружающим воздухом, r – сумма диффузионных сопротивлений листа (устьичного, кутикулярного и сопротивления пограничного слоя).
Сопротивление пограничного слоя зависит от ветра, при отсутствии ветра оно максимально, чем больше ветер, тем оно меньше.
Устьичное диффузионное сопротивление зависит от степени открытия устьиц.
Кутикулярное диффузионное сопротивлениезависит от толщины кутикулярного слоя, чем она больше, тем больше сопротивление.
Продуктивность транспирации – это количество созданного сухого вещества на 1 кг транспирированной воды. В среднем эта величина равна 3 г/1 кг воды.
Транспирационный коэффициент показывает сколько воды растение затрачивает на построение единицы сухого вещества, т.е. этот показатель является величиной, обратной продуктивности транспирации и в среднем равен 300, т.е. на производство 1 тонны урожая затрачивается 300 тонн воды.
Очень важным моментом в процессе транспирации является действие абиотических факторов окружающей среды: влажности атмосферного воздуха и температуры воздуха.
Чем менее влажен атмосферный воздух, т.е. чем меньше его водный потенциал, тем интенсивнее будет идти транспирация. При 100% влажности воздуха его водный потенциал равен нулю. Уже при снижении влажности воздуха на 1-2% его водный потенциал становится отрицательной величиной, а при снижении влажности воздуха до 50% показатель водного потенциала выражается отрицательной величиной порядка 2-3 сотен бар в зависимости от температуры воздуха. При этом в клетках листьев показатель водного потенциала, как правило, выше нуля, поэтому диффундирование воды из межклетников в атмосферу наблюдается почти всегда.
Чем выше температура воздуха, тем выше будет и температура листа, при этом температура внутри клеток листа может быть на 10оС выше, чем в атмосфере. Происходит нагрев воды, находящейся в листе, что также способствует процессу испарения.
Лист как орган транспирации
Что такое транспирация мы разобрали. Теперь следует понять, какую роль в данном механизме играет лист.
Благодаря большой площади испарения, главными диффундирующими участками растения являются листья. Процесс испарения влаги начинается с нижней части листа через раскрытые устья, через которые и осуществляется обмен кислородом и углекислым газом между растением и окружающим воздухом.
Механизм раскрытия устьиц заключается в следующем:
По окружности устий расположены замыкающие клетки.
При увеличении объема они растягивают отверстия в эпидермисе, увеличивая раскрытие устьиц.
Обратный процесс происходит при уменьшении объема замыкающих клеток, стенки которых перестают воздействовать на устьичные щели.
Описание процесса транспирации
На процесс транспирации существенное влияние оказывают несколько значимых факторов.
Факторы влияющие на процесс транспирации
Как было указано выше, интенсивность транспирации определяется в первую очередь степенью насыщенности водой клеток листа растения. В свою очередь, на это состояние главное воздействие оказывают внешние условия – влажность воздуха, температура, а также количество света.
Понятно, что при сухом воздухе процессы испарения происходят более интенсивно. А вот влажность почвы действует на транспирацию обратным образом: чем суше земля, тем меньше воды попадает в растение, тем больше ее дефицит и, соответственно, меньше транспирация.
При повышении температуры также увеличивается транспирация. Однако, пожалуй, основной фактор, влияющий на транспирацию, – это все же свет. При поглощении листовой пластиной солнечного света увеличивается температура листа и, соответственно, раскрываются устьица и повышается интенсивность транспирации.
Знаете ли вы? Чем больше хлорофилла в растении, тем сильнее свет влияет на процессы транспирации. Зеленые растения начинают испарять влагу почти в два раза больше даже при рассеянном свете.
Исходя из влияния света на движения устьиц даже выделяют три основные группы растений по суточному ходу транспирации. У первой группы ночью устьица закрыты, утром они открываются и в течение светового дня двигаются, в зависимости от наличия или отсутствия дефицита воды. У второй группы ночное состояние устьиц является «перевертышем» дневного (если днем были открыты, ночью закрываются, и наоборот). У третьей группы днем состояние устьиц зависит от насыщенности листа водой, но ночью они всегда открыты. В качестве примеров представителей первой группы можно привести некоторые злаковые растения, ко второй относятся тонколистные растения, например, горох, свекла, клевер, к третьей – капуста и другие представители растительного мира с толстыми листьями.
Но в целом следует сказать, что ночью транспирация всегда менее интенсивна, чем днем, поскольку в это время суток температура ниже, света нет, а влажность, напротив, повышена. В течение светового дня транспирация обычно наиболее продуктивна в полуденное время, а со снижением солнечной активности этот процесс замедляется.
Отношение интенсивности транспирации с единицы площади поверхности листа в единицу времени к испарению такой же площади свободной водной поверхности называется относительной транспирацией.
Как происходит регулировка водного баланса
Основную часть воды растение поглощает из почвы посредством корневой системы.
Важно! Клетки корней некоторых растений (особенно произрастающих в засушливых регионах) способны развивать силу, с помощью которой высасывается влага из почвы, до нескольких десятков атмосфер!
Кроме корней, у некоторых растений есть способность поглощать воду и наземными органами (например, мхи и лишайники впитывают влагу всей своей поверхностью).
Поступившая в растение вода распределяется по всем его органам, двигаясь от клетки к клетке, и используется на необходимые для жизни растения процессы. Небольшое количество влаги уходит на фотосинтез, но большая часть необходима для поддержания наполненности тканей (так называемый тургор), а также восполнения потерь от транспирации (испарения), без которых жизнедеятельность растения невозможна. Влага испаряется при любом соприкосновении с воздухом, поэтому этот процесс происходит во всех частях растения.
Если количество воды, которое поглощается растением, гармонично согласовывается с ее расходованием на все указанные цели, водный баланс растения урегулирован правильно, и организм развивается нормально. Нарушения такого баланса могут быть ситуативными или длительными. С кратковременными колебаниями водного баланса многие наземные растения в процессе эволюции научились справляться, но длительные сбои в процессах водоснабжении и испарения, как правило, приводят к гибели любого растения.
Процессы передвижения воды
Как мы уже выяснили, транспирация – естественный физиологический процесс в растительном мире.
Главный ее орган – лист. Поскольку листьев у растений много, они образуют достаточно большую площадь для испарения. В результате водный потенциал уменьшается, а это сигнал для клеток листьев к поглощению воды из ксилемных жилок. По принципу падающего домино следом провоцируется движение воды из корней по ксилеме к листьям. Образуется нечто сродни верхнему конечному двигателю. И чем активнее транспирация, тем мощнее верхний «двигатель», и тем сильнее всасывающая сила «двигателя» нижнего – корневой системы.
Из стебля вода движется в листок, проходя по жилкам через черешок. По дороге жилки «разбегаются», число проводящих элементов становится меньше. Сами жилки превращаются в отдельные трахеиды, которые образуют очень густую сеть. Задерживают влагу в листе однослойный эпидермис с кутикулой на его поверхности. Превратившаяся в пар вода выходит сквозь устьица – специальные многочисленные отверстия микронных размеров, которые растение в состоянии расширять или сужать в зависимости от внешних условий.
Суточный ход транспирации
В течение суток уровень испарения влаги у растений меняется:
- Ночью, процесс водообмена между растением и окружающим воздухом практически останавливается. Это обусловлено отсутствием солнца, закрытием отверстий эпидермиса, снижением температуры атмосферного воздуха и увеличением уровня его влажности.
- На рассвете, устья открываются. Степень их раскрытия увеличивается с изменением освещенности, климатических и физических показателей воздушных масс.
- Максимальная интенсивность транспирации у растений наблюдается в полдень, к 12-13 часам. На данный процесс влияет напряженность солнечного света.
- При недостаточной влажности в дневной период, интенсивность водообмена может снижаться. Этот механизм позволяет растению значительно сократить потерю влаги, защитив себя от увядания.
- При снижении солнечной инсоляции в вечерние часы интенсивность транспирации вновь возрастает.
У кактусов, повышение уровня транспирации происходит исключительно ночью, когда устья полностью раскрыты. У растений, листва которых повернута боковой частью к горизонту, данный процесс начинается непосредственно с первыми лучами солнечного света.
Определение транспирации в биологии — видео
https://youtube.com/watch?v=f0MoAb0XMEs
Верхний концевой двигатель может работать при полном отключении нижнего концевого двигателя, причем для его работы используется не только метаболическая энергия как в корне, но и энергия внешней среды — температура и движение воздуха.
Механизм и интенсивность транспирации
Растения поглощают лишь незначительную часть всего объема воды, который добывают из грунта – 0,2 процента, иногда немного больше. Все остальное испаряется в воздух. Механизм работы верхнего конечного двигателя достаточно прост. Основан он на том, что обычно в атмосфере маловато водяных паров, а значит, ее водный потенциал можно охарактеризовать как негативный. Например, при относительной влажности воздуха в 90 процентов атмосферное давление равняется 140 барам. А у подавляющего большинства представителей царства флоры давление внутри листа варьируется между 1 и 30 барами. Такой большой разрыв и обеспечивает транспирацию. Водный дефицит, спускаясь по клеткам от листьев по стеблям, неминуемо достигает корней. Это вынуждает нижний двигатель «запускаться», всасывая воду из грунта. А испарение с поверхности листьев поднимает ее, вместе со всеми минеральными солями, обратно наверх.
Есть несколько факторов, влияющих на интенсивность транспирации.
- «Наполненность» растения водой. Когда она достигает критического уровня, устьица сужаются.
- Насыщенность воздуха углекислым газом. Большинство растений на чрезмерную его концентрацию отвечают закрытием устьиц.
- Освещение. Обычно когда светло, устьица открыты. Темнеет – закрываются.
- Температура воздуха. Переваливая за 35-40°С, она провоцирует закрытие устьиц.
- Температура поверхности самого листа. Нагреваясь на каждые 10°С, лист отдает вдвое больше влаги.
- Влажность воздуха и скорость ветра. Чем суше атмосфера, тем выше транспирация.
Механизм транспирации
Процесс жизнедеятельности любого растения неразрывно связан с потреблением влагой. Из суточного объема полученной воды для фотосинтеза и физиологических потребностей растению необходимо только 10%. Оставшиеся 90% испаряются в атмосферу.
Зачем растению нужно испарять влагу? Транспирация позволяет растению получать из грунта питательные вещества и микроэлементы, растворенные в воде.
Механизм действия следующий:
Освобождаясь от лишней влаги, в водопроводящих тканях растений создается отрицательное давление.
Разряжение «подтягивает» влагу из соседних клеток ксилемы, и так, по цепочке, непосредственно до всасывающих клеток корневой системы.
Благодаря процессу испарения растения естественным образом регулируют свою температуру, защищая себя от перегрева. Доказано, что температура транспирирующего листа ниже не испаряющего влагу. Разница достигает 7°С.
У растений различают две разновидности влагообмена:
- посредством устьиц;
- через кутикулы.
Чтобы понять принцип действия данного явления необходимо вспомнить строение листа из школьного курса биологии.
Лист растения состоит из:
Клеток эпидермиса, которые образуют основной защитный слой.
Кутикула – восковой (внешний) защитный слой.
Мезофилл или «мякоть» – основная ткань, расположенная между внешними слоями эпидермиса.
Прожилки – «транспортные магистрали» листа, по которым перемещается влага насыщенная питательными веществами.
Устья – отверстия в эпидермисе, контролирующие газообмен растения.
При устьичной транспирации, процесс испарения происходит в две стадии:
Переход влаги из жидкой фазы в парообразную. Вода в жидком состоянии находится в клеточных оболочках. Пар формируется в межклеточном пространстве.
Выделение газообразной влаги в атмосферу через устья эпидермиса.
При устьичном влагообмене растение может регулировать уровень испарения. Далее рассмотрим механизм действия данного процесса.
Кутикулярная транспирация регулирует испарение влаги с поверхности листьев при закрытых устьях. Интенсивность испарения жидкости зависит от толщины кутикулы и возраста растения.
Ход испарения в зависимости от времени суток
В зависимости от времени суток, испарение проходит по-разному. Утром испарение происходит крайне вяло. Но как только солнце поднимается по небосводу все выше — влажность в воздухе уменьшается, и процесс испарения усиливается. Ближе к вечеру этот процесс замедляется, а ночью замедляется настолько сильно, насколько это возможно.
Наблюдать правильный процесс «дыхания» растений можно наблюдать только в хорошую погоду и безоблачном небе. Обычно, в сутки транспирация имеет два пика испарения, в самый жаркий час испаряется самый минимум. Устьица закрываются а растения высушиваются.
Регуляция
Растение регулирует свой уровень транспирации с помощью изменения размера устьичных щелей. На уровень транспирации также влияет состояние атмосферы вокруг листа, влажность, температура и солнечный свет, а также состояние почвы и её температура и влажность. Кроме того, надо учитывать и размер растения, от которого зависит количество воды, поглощаемой корнями и, в дальнейшем, испаряемой через листья.
Особенность | Влияние на транспирацию |
---|---|
Количество листьев | Чем больше листьев, тем больше поверхность испарения и больше количество устьиц для газообмена. Это увеличивает потери воды. |
Количество устьиц | Чем больше на листе устьиц, тем больше воды испаряет лист. |
Размер листа | Лист с большей площадью испаряет больше воды, чем лист с маленькой. |
Наличие растительной кутикулы | Воскоподобная плёнка кутикулы плохо проницаема для воды и водяных паров и снижает испарение с поверхности растения, за исключением испарения через устьица. Блестящая поверхность кутикулы отражает солнечные лучи, снижая температуру листа и уровень испарения . Небольшие волоски (трихомы) на поверхности листа также снижают потерю воды, создавая рядом с поверхностью зону высокой влажности . Такие приспособления для сохранения воды можно наблюдать у многих растений из засушливых мест — ксерофитов. |
Содержание CO2 | У многих растений понижение уровня углекислого газа в воздухе приводит к повышению тургора замыкающих клеток и открытию устьиц . |
Уровень света | Помимо понижения уровня углекислого газа в процессе фотосинтеза свет может оказывать и непосредственное влияние на замыкающие клетки, заставляя их разбухать . |
Температура | Увеличение температуры увеличивает скорость испарения и уменьшает относительную влажность окружающей среды, что также увеличивает потерю воды. |
Относительная влажность | Сухой воздух вокруг листьев повышает уровень транспирации. |
Ветер | В стоячем воздухе рядом с поверхностью испарения образуется область с высокой влажностью, что замедляет потерю воды. |
Во время сезона роста лист может испарить количество воды во много раз превышающее его собственный вес. Один гектар посева пшеницы испаряет за лето 2000—3000 тонн воды
. В сельском хозяйстве оперируют понятием транспирационного коэффициента, это соотношение между затраченной массой воды и приростом сухой массы. Обычно он составляет от 200 до 600
(1000)
, т.е для образования одного килограмма сухой массы сельхозкультуры необходимо от 200 до 1000 литров воды.
Для измерения уровня транспирации растений существует множество техник и приборов, включая потометры, лизиметры, порометры, фотосинтетические системы
и термометрические сенсоры. Для измерения эвапотранспирации применяют главным образом изотопные методы
. Недавние исследования
показывают, что вода, испарённая растениями, отличается по изотопному составу от грунтовых вод.
У пустынных растений есть специальные приспособления, позволяющие снизить транспирацию и сохранить воду, такие как толстая кутикула, уменьшенная площадь листьев и волоски на листьях. Многие из них используют так называемый CAM-фотосинтез, когда днём устьица закрыты, а открываются только ночью, когда температура ниже, а влажность больше.
Виды, функции и строение тканей растений.
Образовательная ткань растений.
Название ткани | Строение | Местонахождение | Функции |
1. Верхушечная меристема | Молодые тонкостенные клетки с крупным ядром и густой цитоплазмой. Их деление происходит путем митоза . | Кончики корней, почки побегов (конусы нарастания) | Рост органов в длину благодаря делению клеток; образование тканей корня, стебля, листьев, цветков |
2. Боковая (камбий) | Между древесиной и лубом стеблей и корней | Рост корня и стебля в толщину; камбий внутрь откладывает клетки древесины, а наружу — клетки луба. | |
3. Вставочная меристема | Между постоянными тканями | Периодическое отрастание поврежденных листьев и стеблей |
Образовательная ткань растений
Вставочная меристема
Покровная ткань растений.
Название ткани | Строение | Местонахождение | Функции |
1. Первичная Кожица (эпидерма) | Плотно сомкнутые живые клетки с устьицами и утолщенной наружной стенкой | Покрывает листья, зеленые стебли, все части цветка | Защита органов от колебаний температуры, повреждений и высыхания |
2. Вторичная — пробка | Мертвые клетки, их стенки пропитаны жироподобным веществом суберином | Покрывает зимующие клубни, корневища, корни, стебли | |
3. Корка (покровный комплекс) | Много слоев пробки, а также другие мертвые ткани | Покрывает нижнюю часть стволов деревьев |
Клетка эпидермы
Строение эпидермы
Покровная ткань растений — корка
Проводящая ткань растений.
Название ткани | Строение | Местонахождение | Функции |
1. Сосуды древесины – ксилема | Полые трубки с одревесневающими стенками и отмершим содержимым | Древесина (ксилема), проходящая вдоль корня, стебля, жилок листьев | Проведение воды и минеральных веществ из почвы в корень, стебель, листья, цветки |
2.Ситовидные трубки луба — флоэма Сопровождающие клетки или клетки-спутницы |
Вертикальный ряд живых клеток с ситовидными поперечными перегородками Сестринские клетки ситовидных элементов, сохранившие свою структуру |
Луб (флоэма), расположенный вдоль корня, стебля, жилок листьев Всегда располагаются вдоль ситовидных элементов (сопровождают их) |
Проведение органических веществ из листьев в стебель, корень, цветки Принимают активное участие в проведении органических веществ по ситовидным трубкам флоэмы |
3. Проводящие сосудисто-волокнистые пучки | Комплекс из древесины и луба в виде отдельных тяжей у трав и сплошного массива у деревьев | Центральный цилиндр корня и стебля; жилки листьев и цветков | Проведение по древесине воды и минеральных веществ; по лубу — органических веществ; укрепление органов, связь их в единое целое |
Проводящая ткань
Проводящая ткань
Сопровождающая клетка
Механическая ткань растений.
Название ткани | Строение | Местонахождение | Функции |
1. Колленхима | Живые клетки с неравномерно утолщенными стенками | В первичной коре молодых стеблей | Укрепление молодых растущих органов |
2. Волокна | Длинные клетки с толстыми одревесневающими стенками и отмершим содержимым | Вокруг проводящих сосудисто-волокнистых пучков | Укрепление органов растения благодаря образованию каркаса |
3. Склереиды | Толстостенные клетки, нередко одревесневшие | Твердые оболочки плодов, в мякоти незрелых плодов |
Механические ткани растений
Механические ткани растений
Основная ткань растений.
Название ткани | Строение | Местонахождение | Функции |
1. Ассимиляционная | Столбчатая и губчатая ткань с большим количеством хлоропластов | Мякоть листа, зеленые стебли | Фотосинтез, газообмен |
2. Запасающая | Однородные тонкостенные клетки, заполненные зернами крахмала, белка, каплями масла, вакуолями с клеточным соком | Корнеплоды, клубни, луковицы, плоды, семена | Отложение в запас белков, жиров, углеводов (крахмал, сахар, глюкоза, фруктоза) |
Основные ткани растений
Основные ткани растений
На рисунке ниже представлен сосудисто-волоконный проводящий открытый пучок.
Сосудисто-волоконный проводящий открытый пучок
- Флоэма
- Ксилема
- Камбий
- Склеренхимные волокна
Информация о статье:
Ткани растенийВиды, функции и строение тканей растений.
Date Published: 11/29/2016
В статье описываются основные ткани растений. Их функции, строение. В качестве примеров приведены рисунки.
10 / 10 stars
Суточный ход транспирации
В течение суток уровень испарения влаги у растений меняется:
- Ночью, процесс водообмена между растением и окружающим воздухом практически останавливается. Это обусловлено отсутствием солнца, закрытием отверстий эпидермиса, снижением температуры атмосферного воздуха и увеличением уровня его влажности.
- На рассвете, устья открываются. Степень их раскрытия увеличивается с изменением освещенности, климатических и физических показателей воздушных масс.
- Максимальная интенсивность транспирации у растений наблюдается в полдень, к 12-13 часам. На данный процесс влияет напряженность солнечного света.
- При недостаточной влажности в дневной период, интенсивность водообмена может снижаться. Этот механизм позволяет растению значительно сократить потерю влаги, защитив себя от увядания.
- При снижении солнечной инсоляции в вечерние часы интенсивность транспирации вновь возрастает.
Суточный процесс влагообмена также зависит от вида и возраста растений, региона произрастания, схемы расположения листьев.
У кактусов, повышение уровня транспирации происходит исключительно ночью, когда устья полностью раскрыты. У растений, листва которых повернута боковой частью к горизонту, данный процесс начинается непосредственно с первыми лучами солнечного света.
Определение транспирации в биологии — видео
https://youtube.com/watch?v=f0MoAb0XMEs
http://www.lineyka.net/raboty-na-dache/transpiracija-u-rastenij-sutochnyj-hod.htmlhttp://studopedia.ru/5_97143_transpiratsiya-ee-znachenie-list-kak-organ-transpiratsii-vidi-transpiratsii-ee-pokazateli-sutochniy-hod-transpiratsii-vliyanie-vneshnih-uslovii.htmlhttp://glav-dacha.ru/transpiraciya-u-rasteniy/
Испарение воды растениями
Транспирация — это процесс получения растениями водного потока и испарение влаги. Вода является необходимым элементом для роста и развития растения, но для этого её используется лишь 10%, остальные 90% — приходятся на испарение. Она защищает растительность от перегрева и улучшает поступление минеральных и органических веществ, попадающих с потоком воды в стебли и листву от корней.
https://youtube.com/watch?v=IHeL_8izWY8
Транспирация позволяет растению:
- получать постоянный запас питательных элементов и полезных минералов;
- принимать солнечную энергию и регулировать температуру;
- поддерживать охлаждение листвы с жаркое время суток;
- обеспечивать процесс вегетативного размножения.
Влияющие факторы
Транспирация у растительных организмов зависит от размера и численности проводящих сосудов, количества устьиц
Не менее важное значение имеет толщина кутикулы, структура коллоида и насыщенность сока клеток
Из-за испарения в клетках листвы образуется всасывающая сила, поэтому водяной поток направлен снизу вверх по всей длине стебля. Благодаря такому процессу длительное время не вянут срезанные ветки и цветущие растения, помещённые в вазу, наполненную водой. Среди факторов, в большой степени влияющих на процесс испарения, имеют место свет, температура воздуха, ветер, насыщенность воздуха водяным паром:
- Благодаря свету устьице открываются и улучшается проникаемость содержимого клетки листа и клеток, для испарения воды. Из-за поглощения лучей солнца хлорофиллом повышается температура листвы. Кроме того, процесс транспирации становится сильнее, что понижает температуру испаряющих листьев, и они не перегреваются. Испарение при свете на 30—40% выше нежели в темноте.
- Если повышается температура воздуха, испарение усиливается. Происходит это из-за ускорения потока водных молекул и быстроты проникновения паров воды с верхнего слоя коллоидов оболочки клеток.
- Сила ветра влияет на ход транспирации в двустороннем направлении. Ветер заменяет влажный слой воздуха, находящийся над листвой, на сухой, поэтому влияет испарение воды из межклетников листьев. Из-за колыхания листа порывами сильного ветра закрываются щели устьиц, что способствует снижению процесса испарения.
- Влияние насыщенности воздуха водяным паром происходит следующим образом: чем ниже влажность воздуха, тем медленнее протекает транспирационный процесс — и наоборот.
Правила ухода за виноградом осенью и его обрезка на зиму
Транспирация на протяжении суток
Рано утром испарение слабое. Чем выше поднимается солнце и температура воздуха, тем сильнее становится транспирация. Вечером — ниже, ночью — сводится до минимума. В самое жаркое время дня устьица закрываются, а растение обезвоживается, из-за чего происходит ещё один минимум транспирации. Также в течение суток могут быть два максимума. Правильный суточный ход лучше всего наблюдается при отсутствии облаков на небе.
Показатели процесса
Характерными знаками испарения влаги у растительности являются:
- интенсивность испарения;
- относительная транспирация;
- коэффициент;
- продуктивность.
Формула интенсивности транспирации — количество влаги, испаряющееся единицей площади листа в единицу времени. В продолжительности 24 часов у разных растительных организмов она разная: в дневное время у большего количества растений она составляет 15—250 грамм в час на 1 м², в ночное время — от 1 до 20 граммов.
Транспирационный коэффициент указывает на то, какое количество воды нужно затратить растению, чтобы создать 1 грамм сухого вещества. Для верного его расчёта, кроме сухой листвы, учитывается вес корневой системы и стебля. Самый верный расчёт можно произвести для однолетних растительных организмов: в среднем его составная величина 300—400 г. Благодаря тому, что с помощью транспирационного коэффициента можно высчитать требуемое растению количество воды, его нередко применяют для расчёта объёма воды, используемого для полива.
Продуктивность транспирации показывает, какое количество грамм сухого вещества растение накопило в период испарения 1 килограмма воды. В среднем она составляет 3 грамма, может изменяться от 1 до 8 грамм.
ИНТЕГРАЦИИ У РАСТЕНИЙ
Межклеточные системы регуляции (трофическая, гормональная, электрофизиологическая).
Гормоны растений (фитогормоны) как основные регуляторы процесса роста и развития. Общие представления о гормонах. Гормоны животных и растений (сходство и различие). История развития фитогормонов. Основные группы фитогормонов – ауксины, гиббереллины, брассиностероиды (брассины), Абсцизовая кислота, этилен. Химический состав, пути биосинтеза (метаболические «вилки»). Влияние условий среды на образование фитогормонов. Транспорт. Физиологические проявления действия фитогормонов (способ действия). Взаимодействие фитогормонов. Механизм гормональной регуляции. Гормон – рецепторный комплекс. Трансдукция гормонального сигнала. Действие фитогормонов на генном уровне, на уровне мембран, аллостерическое действие. Гормональная регуляция экспрессии генов. Роль гормонов в образовании белков-ферментов. Условия и методы применения фитогормонов в практике растениеводства. Синтетические регуляторы роста. Ретарданты.
Электрофизиологическая система регуляции: потенциал покоя, потенциал возбуждения (действия). Организменный уровень регуляции (доминирующие центры, полярность, канализированные связи, осцилляции, регуляторные контуры)
Что такое транспирация и ее показатели
Транспирацией растений называется процесс извлечения жидкости с дальнейшим испарением. Примечательно, что растительная культура использует только 10% получаемой жидкости, а остальные 90% она просто испаряет. Этот процесс в биологии позволяет защитить растительность от жары и ускоряет проникновение минералов в стебли.
Транспирация – процесс испарения влаги через листья
Интенсивность и продуктивность
Интенсивность испарения определяется так: количество воды, высыхающее на единице площади листьев, деленное на отрезок времени. В течение суток этот показатель у каждого растения будет отличаться: ночью он достигает 20 г в час, а днем – 250 г.
Формула продуктивности выглядит так: соотношение сухой массы к килограмму жидкости в период потери влаги. Средний показатель – 3 г, а максимальный – 8 г.
Транспирационный коэффициент
Этот показатель демонстрирует количество влаги, необходимое растительности для создания 1 г сухой массы, которая включает листья, корни и стебель. Наиболее верный расчет осуществляется для однолетних организмов – составная масса достигает порядка 350 г. Этот коэффициент позволяет вычислить емкость жидкости, необходимой для полива культуры.
Таблица: транспирационные коэффициенты различных сельскохозяйственных культур
Суточный ход
Наименьшая погрешность этого показателя достигается только при безоблачной погоде. Минимум транспирации приходится на жаркий полдень, поскольку в это время устьицы закрываются и теряют влагу.
Относительная транспирация
Этот показатель позволяет сравнить скорость испарения с поверхности листьев и открытой поверхности воды. Коэффициент меняет свою интенсивность в промежутке от 0,01 до 1,0.
Внутреннее строение листа
Внутренняя структура листовой пластинки приспособлена для фотосинтеза, газообмена и испарения воды. Вся поверхность листа покрыта прозрачной эпидермой, большинство клеток которой не имеет хлоропластов. Эпидерма верхней стороны листовой пластины содержит восковой кутикулярный слой, препятствующий испарению воды и отражающий солнечные лучи, на нём могут присутствовать железистые волоски и трихомы. Трихомы удерживает влагу и препятствуют её испарению. Эпидерма выполняет несколько функций:
- защита от излишнего испарения;
- регуляция газообмена для дыхания и фотосинтеза;
- выделение воды и некоторых веществ;
- впитывания воды (у некоторых растений, не у всех).
Слой эпидермы на нижней стороне большинства листьев содержит щелевидные отверстия (устьица), с расположенными по бокам замыкающими клетками. При равном освещении обеих сторон листа, устьица образуются на обеих из них. У плавающих в воде листьев устьица есть только на верхней эпидерме. Устьица регулируют газообмен и испарение, они связаны с межклетниками основной ткани листа.
Эпидерма листа традесканции
Основная ткань между верхней и нижней эпидермой называется мезофиллом. Мезофилл – важнейшая ткань листа, в её клетках сосредоточены хлоропласты и происходит фотосинтез. Она перемежается жилками различных размеров. Клетки мезофилла покрыты тонкой оболочкой, они не имеют одревесневшей клеточной стенки.
Большинство листьев папоротников и цветковых растений имеет два различных типа мезофилла:
- верхний, столбчатый (палисадный) – состоящий из одного или нескольких (чаще двух) рядов плотноупакованных бочкообразных или цилиндрических вытянутых клеток хлоренхимы (паренхима с хлоропластами). Они расположены прямо под эпидермой вертикально по отношению к ней. Листья, растущие на солнце, содержат до 5 слоёв палисадного мезофилла, в теневых листьях есть только 1 слой. Некоторые растения, например виды Эвкалиптов из-за особого расположения их листьев по отношению к свету (боком) содержат столбовидную хлоренхиму ближе к краям листовой пластинки.
- губчатый – пространство между столбчатой хлоренхимой и нижним эпидермисом заполнено рыхлой паренхимой, между клетками которой имеется множество воздушных пространств. Эти воздушные полости взаимосвязаны с устьицами и участвуют в газообмене и выведении водяного пара из листа. Увеличение межклеточных пространств достигается различными путями: в одних случаях клетки сохраняют округлую форму, в других образуют выросты.
Расположение устьиц преимущественно на нижней стороне листа объясняется не только положением губчатого мезофилла. Потеря воды листом в процессе транспирации идёт медленнее через устьица, расположенной в нижней, а не в верхней эпидерме. Кроме того, главным источником углекислого газа в атмосфере является «почвенное дыхание» — выделение СО2 в результате жизнедеятельности многочисленных живых существ, населяющих почву.
Абсолютная толщина палисадной и губчатой ткани и число слоёв клеток в них различны, в зависимости от освещения и других причин. Даже у одной особи, например на одном кусте сирени, листья, выросшие на свету, имеют более развитый мезофилл, чем теневые листья.
Внутреннее строение листьев может меняться. Если нижняя сторона листьев получает достаточно света, то и на ней образуется столбчатый мезофилл. У многих листьев однодольных растений мезофилл не дифференцируется на столбчатый и губчатый, а состоит из одинаковых клеток. Встречаются уклонения от типичной плоской структуры листа и тогда клеточное строение тоже меняется. У некоторых растений-ксерофитов обе стороны листа имеют одинаковую эпидерму и мезофилл. У многих суккулентов листья цилиндрической формы с радиальной симметрией. У некоторых злаков имеется особенно высокоспециализированный тип мезофилла – корончатый. Здесь клетки мезофилла окружают проводящие пучки, примыкая к ним по радиусу. В промежутках между клетками имеются большие межклетники, против которых с обеих сторон имеются устьица.